

THE ELECTROWEAK, THE STRONG AND THE UNKNOWN

Beate Heinemann
University of Liverpool

UC Berkeley/LBNL, February 16th 2006

OUTLINE

- Introduction
- The Tools:
 - Present: HERA, Tevatron
 - Future: LHC, ILC
- The Electroweak Force
 - Deep Inelastic Scattering
 - Trilinear Gauge Couplings
- The Strong Force
 - Probing the proton structure
- The Unknown
 - Supersymmetry
- Conclusions

THE STANDARD MODEL

- Matter is made out of fermions:
 - quarks and leptons
 - 3 generations
- Forces are carried by Bosons:
 - Electroweak: γ,W,Z
 - Strong: gluons
- Higgs boson:
 - Gives mass to particles
 - Not found yet

Three Generations of Matter

ELECTROWEAK AND STRONG FORCE

- Quantum field theory is used to describe forces of nature:
 - Unified description of weak and electromagnetic force (Glashow, Salam, Weinberg):
 - Photon
 - W, Z
 - Strong force described by Quantumchromodynamics (QCD)
 - gluons
- Precision measurements test validity of model and calculations

THE UNKNOWN

- Many good reasons to believe there is as yet unknown physics beyond the SM:
 - Dark matter + energy, matter/anti-matter asymmetry, neutrino masses/mixing +many more (see later)
- Many possible new particles/theories:
 - Supersymmetry:
 - Many flavours
 - Extra dimensions (G)
 - New gauge groups (Z', W',...)
 - New fermions (e*, t', b', ...)
 - Leptoquarks
- Can show up!
 - As subtle deviations in precision measurements
 - In direct searches for new particles

THE TOOLS

CURRENT HIGH ENERGY COLLIDERS

Tevatron

√s=1.96 TeV

HERA

√s=0.32 TeV

FUTURE HIGH ENERGY COLLIDERS

LHC (2007-?)

ILC (>2020?)

 $\sqrt{s}=0.5-1 \text{ TeV}$

H1 AT HERA

- Asymmetric detector
 - Most particles go forward due to higher proton energy
- Luminosity:
 - HERA-1 running ended in 2000:
 - $\int Ldt = 130 \text{ pb}^{-1}$
 - Results shown here
 - HERA-2 run started in 2001:
 - $\int Ldt = 170 \text{ pb}^{-1}$

CDF AT THE TEVATRON

- Multi-purpose detector
 - Excellent tracking
 - Silicon and drift chamber
 - Calorimetry
 - Muon systems
 - Time-of-flight detector
- Luminosity:
 - \(\int \text{Ldt} = 1.25 \text{ fb}^{-1} \text{ recorded} \)

THE ELECTROWEAK, THE STRONG AND THE UNKNOWN

TESTING ELECTROWEAK THEORY

• Strength of electromagnetic and weak forces:

- Photon exchange:

•
$$\sigma \propto \alpha_{\rm em}^2/Q^4 \propto e^4/Q^4$$

- W boson exchange:

•
$$\sigma \propto G_F^2 M_W^4 / (M_W^2 + Q^2)^2 \quad (G_F / \sqrt{2} = g^2 / 8 M_W^2)$$

- for $Q^2 \approx 0$: $\sigma \propto G_F^2$
- for $Q^2 \gg M_W^2$: $\sigma \propto G_F^2 M_W^4 / Q^4 \propto g^4 / Q^4$

• Weakness at low energy comes from M_W term, not from coupling $g = e/\sin^2\!\theta_W \approx 4e$

TESTING ELECTROWEAK THEORY

• Strength of electromagnetic and weak forces:

- Photon exchange:

•
$$\sigma \propto \alpha_{\rm em}^2/Q^4 \propto e^4/Q^4$$

- W boson exchange:

•
$$\sigma \propto G_F^2 M_W^4 / (M_W^2 + Q^2)^2 (G_F / \sqrt{2} = g^2 / 8 M_W^2)$$

- for $Q^2 \approx 0$: $\sigma \propto G_F^2$
- for $Q^2 \gg M_W^2$: $\sigma \propto G_F^2 M_W^4 / Q^4 \propto g^4 / Q^4$

• Weakness at low energy comes from M_W term, not from coupling $g = e/\sin^2\theta_W \approx 4e$

Expect both forces to be similar for Q²>M_W² => Test in deep inelastic scattering at HERA

NEUTRAL AND CHARGED CURRENT CROSS SECTIONS

- Processes:
 - Neutral Current (NC): $\propto 1/Q^4$
 - Observe scattered electron
 - Charged Current (CC): $\propto 1/(M_W^2+Q^2)^2$
 - Observe missing transverse energy from neutrino
- Electroweak unification seen:
 - At Q²≈100 GeV²:
 - 3 orders of magnitude different
 - CC cross section nearly independent of Q²
 - At Q²≈10000 GeV²:
 - Very similar
 - CC cross section falls as steeply as NC
 - In NC case Z exchange also contributes

TRILINEAR GAUGE COUPLINGS

- Group: SU(2)xU(1)
- SU(2) is non-abelian gauge group:
 - Triple and quartic couplings of gauge bosons
 - Strength of couplings precisely predicted
- Probed at LEP2:
 - WW cross section
 - Data disagree with models w/o triple vertex
 - Data agree well with Standard Model prediction

ANOMALOUS COUPLINGS

- Most generally
 - 7 WWγ and 7 WWZ couplings
- Impose
 - gauge invariance
 - conservation of C and P
 - Assume $\kappa_{\gamma} = \kappa_{Z}$ and $\lambda_{\gamma} = \lambda_{Z}$
- Reduce to three independent parameters:
 - g_1^z , κ_y , λ_y (= 1, 1, 0 in SM)
 - Related to magnetic dipole moment and electric quadrupole moment of W
- Precise results from LEP2:
 - Agrees with Standard Model
 - Probes couplings at 5-10% level

Wy Production: Tevatron

- Direct sensitivity to photon:
 - No assumption on WWZ coupling
- **High energy:**
 - Sensitive to high mass scale physics (e.g. W*)
- Anomalous couplings increase cross section at high photon E_T
 - Best sensitivity to λ

Wy and Zy Production

These diagrams interfere and decay products are detected in the detector

EVENT SELECTION

W:

- Isolated electron or muon
 - p_T>20 GeV
- Missing transverse energy
 - **½**_T >20 GeV

• **Z**:

- Two isolated electrons or muons:
 - p_T>20 GeV

• Photon:

- Isolated electromagnetic cluster with no track
 - E_T>7 GeV
- Final states for analysis:
 - $-ev\gamma$, $\mu\nu\gamma$ and $ee\gamma$, $\mu\mu\gamma$

Di-Electron Invariant Mass Spectrum

PHOTON BACKGROUND

- Biggest challenge in analysis:
 - Background to photons
 - Particularly from $\pi^0 \rightarrow \gamma \gamma$
- Discriminate on basis of
 - Shower shape:
 - π^0 's are broader
 - Conversion probability:
 - π^0 's have higher probability
- Measure rate at which "jets" look like photons
 - Subtract prompt photons statistically from jet sample
 - Result:
 - About 0.3–0.05% depending on photon $E_{\scriptscriptstyle T}$

Wy and Zy Cross Sections

 \mathbf{W}_{γ}

	eνγ	μνγ	
W+ γ	126.8 ± 5.8	95.2 ± 4.9	
W+jet BG	59.5 ± 18.1	27.6 ± 7.5	
W+ γ (tau)	1.5 ± 0.2	2.3 ± 0.2	
Z+ γ	6.3 ± 0.3	17.4 ± 1.0	
Total SM	194.1 ± 19.1	142.4 ± 9.5	
data	195	128	
σ *BR (pb)	19.4 ± 3.6	16.3 ± 2.9	

 \mathbf{Z}_{γ}

	ееү	μμγ
Z+ γ	31.3 ± 1.6	33.6 ± 1.5
Z+jet BG	2.8 ± 0.9	2.1 ± 0.7
Total SM	34.1 ± 1.8	35.7 ± 1.6
data	36	35
σ *BR (pb)	4.8 ± 0.9	4.4 ± 0.8

 σ^* BR (W→ℓν)=18.1 ± 3.1 pb Theory: 19.3± 1.4 pb

 σ^* BR (Z→ℓℓ)=4.6 ± 0.6 pb Theory: 4.5± 0.3 pb

PHOTON E_T

- Data agree well with SM
- Will be used to extract WW_{γ} and ZZ_{γ} couplings

TRANSVERSE/INVARIANT MASS

- Data agree well with prediction
 - no sign of any deviation at high mass
- Can be used to constrain e.g. W* and Z*

WWy Couplings: Future

- Tevatron constraints competitive with LEP with 2 fb⁻¹
 - Independent of assumptions on WWZ couplings
- LHC and LC will improve by 2 orders of magnitude:
 - Will probe with high precision:
 - Δλ/λ ≈ 1/1000, Δκ/κ≈3/100

Coupling	14 TeV	14 TeV	28 TeV	28 TeV	LC
	$100 { m fb}^{-1}$	$1000{\rm fb}^{-1}$	$100 \; { m fb}^{-1}$	$1000 \mathrm{fb}^{-1}$	$500 \mathrm{fb^{-1}}, 500 \mathrm{GeV}$
λ_{γ}	0.0014	0.0006	0.0008	0.0002	0.0014
λ_Z	0.0028	0.0018	0.0023	0.009	0.0013
$\Delta \kappa_{\gamma}$	0.034	0.020	0.027	0.013	0.0010
$\Delta \kappa_Z$	0.040	0.034	0.036	0.013	0.0016
g_1^Z	0.0038	0.0024	0.0023	0.0007	0.0050

RADIATION AMPLITUDE ZERO

 "Radiation Amplitude Zero" due to interference of t-/u- and s-channel:

- Suppressed: for W- $\cos\theta = -(1+2Q_d) = -1/3$

- Observable in angular separation of

lepton and photon:

Higher order QCD corrections spoil this:

• At LHC invisible

d u => **W** γ

THE ELECTROWEAK, THE STRONG AND THE UNKNOWN

THE STRONG FORCE: QCD

- calculations difficult since coupling, α_s , very large
 - high Q²: asymptotic freedom (α_s <<1)
 - perturbative expansion can be made
- Measure proton structure function vs x and Q²:
 - x = fractional proton momentum carried by parton
 - Q²= momentum transfer
- Inclusive measurement probes
 - structure of proton:
 - x-dependence of parton densities not known a priori: must be determined from experiments
 - Perturbative QCD:
 - Q² dependence predicted by perturbative QCD: DGLAP evolution equations

What happens there?

THE STRONG FORCE: QCD

- calculations difficult since coupling, α_s , very large
 - high Q²: asymptotic freedom (α_s <<1)
 - perturbative expansion can be made
- Measure proton structure function vs x and Q²:
 - x = fractional proton momentum carried by parton
 - Q²= momentum transfer
- Inclusive measurement probes
 - structure of proton:
 - x-dependence of parton densities not known a priori: must be determined from experiments
 - Perturbative QCD:
 - Q² dependence predicted by perturbative QCD: DGLAP evolution equations

+ many more processes

STRUCTURE FUNCTION

1969:

- first measurement at SLAC
- discovery of "scaling"
- Partonic substructure of proton
- $\sigma \propto F_2(x,Q^2) \approx \sum e_q^2 q(x,Q^2)$

HERA:

- Vast increase in kinematic coverage
 - Increasing Q² = increasing resolution
- Scaling violations
- Good agreement with NLO QCD calculations
- Precision about 2% per point

IMPLICATIONS

- Important to know LHC cross sections,
 - e.g. Higgs is in x-range probed by HERA:
 - Current precision for gg -> H: 10%
 - All branching ratio and cross section measurements rely on knowledge of proton densities

LHC parton kinematics

B-QUARK DENSITY

- Only 0.1–1% of the proton content:
 - 10 times less than charm
- Important for new physics processes:
 - E.g. Higgs in SUSY may couple strongly to bquarks (high tanβ)
- test by measuring Z+b Production at the Tevatron:
 - $Q^2 = m_Z^2 \approx 8,000 \text{ GeV}^2$

Z+B-JET PRODUCTION

- Many possible production modes:
 - QCD:
 - Single b: ~ 0.6 pb
 - Double b: ~ 0.04 pb
 - New Particles:
 - Higgs boson
 - 4th generation quark: b'

MEASUREMENT TECHNIQUE

- Select Z bosons in electron and muon decay modes
- Identify b-quark through secondary decay vertex
 - Due to long lifetime of b hadrons
- 115 candidate events:
 - Background from non-Z production small:
 - 7.6 ± 2.5 % in e⁺e⁻ mode
 - 3.9 ± 1.0 % in μ⁺μ⁻ mode

Z mass for events with b-jet

SEPARATING B-QUARKS

- $m_b > m_c > m_{u.d.s,gluon}$
- Reconstruct mass of tracks at secondary decay vertex:
 - Discrimination power
- Assign sign to mass:
 - Extra power to discriminate charm and light
- Fit templates to the data:
 - Good description of the data
- Use fitted number of events to extract cross section:
 - 49 ± 16 b-jets

Z+B-JET CROSS SECTION

- Extract inclusive jet cross section:
 - Every b-jet enters the measurement
- Measure also ratio of Z+b-jet to Z+any-jet production

	Data	NLO QCD(*)	PYTHIA
σ(Z+b−jet) [pb]	0.96± 0.35	0.48 ± 0.07	1
σ(Z+b-jet)/ σ(Z+jet) [%]	2.4± 0.8	1.9 ± 0.3	2.1

- Measurement agrees with NLO QCD calculations and PYTHIA but statistically limited:
 - Expect improvements with
 - more data
 - improved b-quark tagging

THE ELECTROWEAK, THE STRONG AND THE UNKNOWN

THERE IS A LOT UNKNOWN

The Standard Model

- only accounts for 4% of matter in Universe
 - No candidate for Cold Dark Matter (~25%)
- cannot explain large mass hierarchy in fermion sector:
 - >10 orders of magnitude
- does not allow grand unification:
 - electroweak and strong interactions do not unify
- has large radiative corrections in Higgs sector
 - require fine-tuning of parameters
- Cannot explain matter-antimatter asymmetry?

Matter Density

Supersymmetry can solve three of these problems

SUPERSYMMETRY

- SM particles habe supersymmetric partners:
 - Differ by 1/2 unit in spin
- No SUSY particles found as yet:
 - SUSY must be broken
 - breaking mechanism determines phenomenology

WHAT'S NICE ABOUT SUSY?

- Unifications of forces possible
- Dark matter candidate exists:
 - The lightest neutral gaugino
- Radiative corrections to Higgs acquire SUSY corrections:
 - No fine-tuning required
- Changes relationship between m_W , m_{top} and m_H :
 - Also consistent with precision measurements of M_w and m_{top}

MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)

Particles SParticles R=-1 R=1 R= (-1)3B+L+2S μ τ leptons sleptons \widetilde{e} $\widetilde{\mu}$ $\widetilde{\tau}$ $V_{\mu} = V_{\tau}$ neutrinos I sneutrinos $\widetilde{V}_{e} = \widetilde{V}_{\mu} = \widetilde{V}_{\tau}$ bosons fermions S=0 S=1/2 MSSM charginos $\widetilde{\chi}_1^{\pm}$ $\widetilde{\chi}_2^{\pm}$ Z^0 h^0 H^0 A^0 neutralinos $\widetilde{\chi}^0_1$ $\widetilde{\chi}^0_2$ $\widetilde{\chi}^0_3$ $\widetilde{\chi}^0_4$ bosons gauge gluinos \widetilde{g}_i fermions particles S=1 S=1/2G graviton

MSSM has 124 parameters:

 M_1, M_2, M_3 , Gaugino masses, Sfermion masses $tan\beta$, μ , m_A Higgs(ino) mass/mixing (+45 RPV)

SUSY is a broken symmetry

SPARTICLE CROSS SECTIONS: TEVATRON

CHARGINOS AND NEUTRALINOS

- Charginos and Neutralinos:
 - SUSY partners of W, Z, photon and Higgs bosons
 - Mixed states of those
- Scenario here:
 - Neutralino LSP
 - 3 leptons + \mathcal{E}_{t}
- Recent analyses of EWK precision data:
 - J. Ellis, S. Heinemeyer, K. Olive, G. Weiglein:
 - hep-ph/0411216
 - Light SUSY preferred

3 LEPTONS + Et

 Many analyses to cover full phase space:

- Low tanβ:
 - 2e+e/μ or 2μ+e/μ
- High tanβ:
 - 2e+isolated track
 - Sensitive to one-prong tau-decay
- Selection requirements:
 - Significant **E**/t
 - Dilepton mass >15 GeV/c² and not within Z mass range
 - Less than 2 jets

TRILEPTONS: RESULT

Analysis	Total predicted background	Example SUSY Signal	Observed data
Trilepton (μμ+l)	0.09±0.03	0.37±0.05	0
Trilepton (ee+l)	0.17±0.05	0.49±0.06	0
Dielectron +track	0.48±0.07	0.36±0.27	2

No hint of SUSY:

Inclusion of more data and interpretation in progress

SUSY: OUTLOOK

- Trilepton search at Tevatron will probe:
 - Chargino masses up to 150-200 GeV/c²
- LHC will have excellent discovery potential!

10,000 events with 1 fb⁻¹

CONCLUSIONS AND OUTLOOK

- Precision tests of electroweak and strong sector of Standard Model
 - Critical aspects of electroweak and strong sector have been probed at high energy accelerators
 - so far the Standard Model survived all of them
 - we learned a lot from these tests
 - Will it survive new even higher precision in the next decade?
- Direct Searches for new unknown particles:
 - Many reasons for existence physics beyond the Standard Model
 - SUSY has attractive solutions to many problems
 - So far no sign of SUSY found but could appear any day
- Expect major progress in both areas in the next few years:
 - Tevatron (now) => LHC (>2007) => ILC (>2020?)

ALPHAS

EXTRA DIMENSIONS

- Attempt to solve hierarchy problem by introducing extra dimensions at TeV scale
- ADD-model (Antoniadis, Dvali, Dimopoulos):
 - n ED's large: 100μm-1fm
 - $M_{Pl}^2 \sim R^n M_s^{n+2} (n=2-7)$
 - Kaluza-Klein-tower of Gravitons ⇒continuum
 - Interfere with SM diagrams: $\lambda = \pm 1$ (Hewett) KK
- Randall Sundrum:
 - Gravity propagates in single curved ED
 - ED small $1/M_{Pl} = 10^{-35} \text{ m}$
 - Large spacing between KK-excitations
 ⇒ resolve resonances

- Signatures at Tevatron:
 - Virtual exchange:
 - 2 leptons, photons, W's, Z's, etc.
 - BR(G->γγ)=2xBR(G->II)

RANDALL-SUNDRUM GRAVITON

- Analysis:
 - 2 photon mass spectrum
 - Backgrounds:
 - direct diphoton production
 - Jets: $\pi^0 \rightarrow \gamma \gamma$
- Data consistent with background

RANDALL-SUNDRUM GRAVITON

- Analysis:
 - 2 photon mass spectrum
 - Backgrounds:
 - direct diphoton production
 - Jets: $\pi^0 \rightarrow \gamma \gamma$
- Data consistent with background
- Relevant parameters:
 - Coupling: k/M_{Pl}
 - Mass of 1st KK-mode

TRILEPTON BACKGROUNDS

• Small signal:

Good control of backgrounds essential

Main backgrounds:

Drell-Yan + fakelepton: 0.03

Drell-Yan + photon conversion: 0.07

- WZ and ZZ: 0.07

- Top: 0.01

*BG: for ee+lepton analysis

CONCLUSIONS

blablabla

RADIATION AMPLITUDE ZERO

RATIO OF CROSS SECTIONS

- Inclusive W and Z production:
 - Recent CDF result (hep-ex/0406078)
 - $\sigma(Z) / \sigma(W) = 10.15 \pm 0.21\%$
- Wy and Zy Production for $E_T(\gamma)>7$ GeV:
 - $\sigma(Z_{\gamma})/\sigma(W_{\gamma}) = 4.6/18.1 = 25+-5\%$
- => Expected due to
- Destructive interference of ISR and schannel diagrams in Wγ
- No s-channel diagram in Z_γ interference

=>Indirect Evidence for WW_γ vertex!

